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Abstract-Natural frequencies and buckling loads of a simply supported thick plate subjected to
in-plane initial tensile and/or compressive forces are analysed. By using the method of power
series expansion of displacement components, a set of fundamental dynamic equations of a two­
dimensional higher-order plate theory is derived through Hamilton's principle. Several sets of
truncated approximate theories are applied to solve the eigenvalue problems of a thick plate. In
order to assure the accuracy of the present theory, convergence properties of the minimum natural
frequency and the buckling load for the out-of-plane problem of a simply supported square plate
are examined in detail. It is noticed that the present approximate theories can predict the frequencies
and buckling loads of an extremely thick plate more accurately compared to other refined theories
and classical plate theory.
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length of rectangular plates in x l
_ and x2-directions

bending stiffness and shear modulus of plates
Lame's constants
Young's modulus and Poisson's ratio of plates
thickness of plates
order of approximate theory

stress resultants of nth order defined by eqn (8)

in-plane initial forces
displacement mode numbers in x l

- and x2-directions
stress components
initial stresses distributed uniformly in thickness direction
time parameter

generalized displacement components defined by eqn (23)
displacement components

expanded displacement components defined by eqn (2)
Cartesian coordinates (Xl = a~, x 2 = btl)
mass matrix or geometrical stiffness matrix
unit matrix
stiffness matrix
generalized displacement vector
Kronecker's delta
strain components

expanded strain components defined by eqn (3)
ratio of in-plane forces of x2- and xl-directions
eigenvalue
dimensionless buckling load or in-plane initial force in xl-direction defined byeqn (24)
natural frequency
dimensionless natural frequency defined by eqn (24)
mass density of plates.

Greek lower case subscripts (e.g. IX, P) are assumed to range over the integers 1,2.

I. INTRODUCTION

The natural frequencies and buckling loads of thick plates calculated by using the classical
plate theory based on the well-known Kirchhoff-Love hypothesis are usually overpredicted.
In order to analyse a thick plate it may be necessary to take into account the effects of
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rotary inertia and higher-order deformation such as transverse shear deformation and
thickness change.

Mindlin (1951) derived a set of equations of motion by including the effects of rotary
inertia under the same assumption of displacement distributions in the classical theory. In
Mindlin's theory, the distributions of stress components are not specified in the thickness
direction of a plate and, therefore, stress boundary conditions on the surfaces of a plate
cannot be satisfied. Although the first-order effects of transverse shear deformation have
been taken into consideration, the effects of thickness change are neglected. A set of
equations of motion for a thick plate with initial stress has been derived through a vari­
ational procedure by Herrmann and Armenakas (1962). Certain inconsistencies were found
in their formulation. Brunelle and Robertson (1974) derived the equations for initially
stressed Mindlin plates by taking into account the effects of transverse shear and rotary
inertia. The static buckling behavior of a simply supported thick plate with in-plane initial
compressive and bending stresses was studied. Srinivas et al. (1970) developed an exact
three-dimensional analysis for the vibration problem of simply supported homogeneous
and laminated rectangular plates. Some numerical results for the natural frequencies and
the thickness variations of stresses and displacements were compared with those from the
thin plate and Mindlin's theories. Recently a continuum three-dimensional Ritz formulation
has been presented for the vibration analysis of thick plates by Liew et al. (1993). Some
frequency data for thick plates have been shown to examine the limitations of the classical
plate theory and Mindlin plate theory. Based on an assumed displacement field that
accounts for transverse shear and in-plane extensional deformation, Brunelle and Robertson
(1976) derived plate equations to study the effects of an arbitrary state of initial stress in
the vibration problem of thick plates. The equations were also used to study the static
buckling behavior of a simply supported thick plate subjected to combined initial com­
pressive stress and bending stress. Accounting for parabolic distribution of the transverse
shear strains through the thickness of the plate, Reddy and Phan (1985) have developed a
higher-order shear deformation theory to determine the natural frequencies and buckling
loads of isotropic, orthotropic and laminated plates. The solutions of simply supported
plates were compared with the exact solutions of three-dimensional elasticity theory, the
first-order shear deformation theory and the classical theory. Doong (1987) derived the
governing equation for a thick rectangular plate according to a higher-order deformation
theory by using the same displacement field as the second-order approximate theory in the
present paper. The buckling loads and natural frequencies of simply supported plates have
been obtained and compared with the results of Brunelle and Robertson (1976) and Reddy
and Phan (1985). These existing theories are of almost the same order and may be applied
to the analysis of not so thick plates. Beyond the limits of applicability of the existing thick
plate theories, more refined approximate theories should be applied to analyse an extremely
thick plate. The refined theory may be required to introduce the effects of rotary inertia
and transverse shear deformations and/or thickness changes. As an extension of the classical
thin plate theory, the applicability and reliability of the two-dimensional higher-order
theory have been clarified in detail through the numerical results of static boundary-value
problems of an extremely thick plate [Matsunaga (1986), (1992)]. It can be said that two­
dimensional higher-order plate theories are very useful for the static analysis of a thick
plate as extended theories of the classical thin plate theory.

This paper presents the application of approximate equations of a two-dimensional
higher-order theory for the analysis of vibration and stability problems of a thick elastic
plate. On the basis of the power series expansions of displacement components, a fun­
damental set of dynamic equations of a two-dimensional higher-order plate theory is
derived through Hamilton's principle. Several sets of truncated approximate equations of
the present theory are used to solve the vibration and stability problems of a simply
supported thick plate. Following the Navier solution procedure, the displacement com­
ponents are expanded into Fourier series that satisfy the simply supported boundary
conditions. The governing equations of motion can be expressed separately for any fixed
values of displacement mode numbers of rand s. The natural frequency of a thick plate
subjected to in-plane forces is obtained by solving the eigenvalue problem numerically and
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the buckling load is determined when the natural frequency is vanished. The convergence
properties of the present numerical solutions are shown to be accurate for the natural
frequencies and buckling loads with respect to the order of approximate theories. The
present results obtained by various sets of approximate theories are considered to be
accurate enough for extremely thick plates and can be regarded as the benchmark data of
the problem. It is noticed that the two-dimensional higher-order plate theories in the present
paper can predict the frequencies and buckling loads of an extremely thick plate more
accurately compared to other refined theories and classical plate theories.

2. FUNDAMENTAL EQUATIONS OF KINEMATICS OF THICK PLATE

Introducing the Cartesian coordinates xa (0( = 1,2), x3 on the middle plane of a plate
of uniform thickness h, the dynamic displacement components in a plate are expressed as

(1)

where t denotes time. The displacement components may be expanded into power series of
the thickness coordinate x3 as follows:

(2)

where n = 0, 1,2, ... 00.

Based on this expression of the displacement components, a set of the linear fun­
damental equations of kinematics of a two-dimensional higher-order plate theory can be
summarized in the following.

2.1. Strain-displacement relations
Strain components may also be expanded as follows:

(3)

and strain-displacement relations can be written as

(n) 1 (n) (n) (n) 1 (n+ 1) (n) (n) (n+ 1)

Yap = 2 (va,p+ Vp,a) , Ya3 = d(n+ 1) Va +V3,a}, Y33 = (n+ 1) V3 , (4)

where a comma indicates partial differentiation with respect to the coordinate subscripts
that follow.

Introducing stress components sap, sa3 and S33, Hamilton's principle is applied to derive
the equations of dynamic equilibrium and natural boundary conditions of a plate. In order
to treat vibration and stability problems of a plate subjected to in-plane stresses ~r! which
distribute uniformly in the thickness direction, additional works due to these stresses
which are assumed to remain unchanged during vibrating and/or buckling are taken into
consideration. The principle for the present problems may be expressed for an arbitrary
time interval t1 to t2 as follows:

(5)
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where the overdot indicates partial differentiation with respect to time and p denotes the
mass density; d V, the volume element; dS, the element of area of the external bounding
surface ;~ and s~, the prescribed components of the stress vector on the surface of a plate
which are expressed in terms of the prescribed stress components as follows:

(6)

where vp and V3 denote the components of the outward unit vector normal to the external
bounding surface of the plate.

2.2. Equations ofmotion
By performing the variation as indicated in eqn (5), the equations of motion are

obtained as follows:

(n) (n) (n-l) (n) OCJ (m)

lJvfJ:~!-n QfJ +pfJ = p L f(n+m+ l)vP (forn ~ I)
m=O

(O) (0) (O) (0) (0) OCJ (m)

lJVfJ:~!+(Wv:)J,,+pP = P L f(m+ 1)tY'
m=O

(n) (n) (n- J) (n) OCJ (m)

lJV3: e',,-n T +p3 = P L f(n+m+ 1)V3 (forn ~ I)
m=O

(O) (0) (0) (O) (O) OCJ (m)

lJV3: Q::'+(N'lv~"),fJ+p3 = P L f(m+ l)v3,
m=O

where n, m = 0, 1,2, ... 00.

The stress resultants are defined as follows:

(7)

(8)

Load terms measured per unit area of the middle plane are expressed as

(n) (n)

pfJ = [s1?(x3)n]~z~~, p3 = [s~3(x3)n]~z~~, (9)

where the stress components marked with an asterisk denote the prescribed quantities on
the upper and lower surfaces of a plate and the following function is defined as

(10)

(k:even)

(k: odd),

where k is an integer.
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2.3. Constitutive relations
For elastic and isotropic materials, the constitutive relations can be written as

$"p = DoOh,,,!O'lvYAV+ ElhaP(y~ +hAVYAV)

$"3 = DoohaAyi, S33 = Dooy33+EI(y~+hAVYAV)'

3117

(11)

where hap is Kronecker's delta and Lame's constants Doo and E1 are defined by using
Young's modulus E and Poisson's ratio v as follows:

E vE
Doo == I+v' E 1 == (l+v)(1-2v)"

(12)

2.4. Boundary conditions
The equations of the boundary conditions on the upper and lower surfaces are

expressed as

(13)

and along the boundaries on the middle plane as follows:

(n) (n) (n) (n)

Va = v: or vpN'P = vpN'/

(n) (n) (n) (n)

V3 = vt or vpQP = vpQ~, (14)

where n = 0, 1, 2, ... 00 and the quantities marked with an asterisk denote quantities
prescribed along the boundaries on the middle plane of a plate.

2.5. Stress resultants in terms of the expanded displacement components
Stress resultants can be derived from eqns (8) and (II) and eqns (3) and (4) in terms

of the expanded displacement components.

(15)

where n, m = 0, 1,2, ... 00.

2.6. Equations ofmotion in terms ofthe expanded displacement components
The equations of motion can be expressed in terms of the expanded displacement

components by using eqn (15) as

(m) n (m+ I) (m) ] (n)
-pfll} f(n+m+ 1)- 2" DoohPA[(m+1) VA +v3,.Jf(n+m) +pP = 0 (forn;;;l: 1)
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[

(m+l) E1 ;, (m) (m) ] ] (n~
-n (Doo+E1)(m+ I) V3 + 2<5a (va,;,+v;"a> f(n+m) + p = 0 (forn ~ I)

(16)

Within the range of linear problems, the governing equations can be divided into two
types of in-plane and out-of-plane problems according to the symmetry or antisymmetry
conditions of loads and/or displacements with respect to the middle plane of a plate.

2.7. Mth order approximate theory
Since the fundamental equations mentioned above are complex, approximate theories

of various orders, they may be considered for the present problem. A set of the following
combination of Mth (M ~ I) order approximate equations is proposed (Matsunaga, 1986,
1992). This combination of the selected terms of displacement components is suggested
from the forms of shear strain components in eqn (4).

(I) In-plane problem

(17)

where M ~ 2 for V3'

(II) Out-ol-plane problem

M-I (2m+l)
vp = L: vp (x3)2m+ I,

m=O
(18)

where m = 0, 1,2,3, ....
The total number of the unknown displacement components is (3M -I) for in-plane

problems and 3M for out-of-plane problems.
In the above cases of M = I, an assumption of plane strains is inherently imposed.

For out-of-plane problems, another set of the governing equations of the lowest-order
approximate theory (M = I) which reduces to the classical theory is derived with the use
of an assumption of plane state of stresses.

3. FOURIER SERIES SOLUTION FOR SIMPLY SUPPORTED PLATE

In order to show the applicability and reliability of a two-dimensional higher-order
plate theory for the analysis of vibration and stability problems of a thick elastic plate, a
simply supported rectangular plate of plan-form dimensions a and b and thickness h is
analysed. The boundary conditions (14) can be expressed on the xl-constant edges,
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(n) (n) (n)

Nil = 0, V2 = 0, V3 = °
3119

(19)

(n)
VI = 0,

(n)

N 22 = 0,
(n)

V3 = 0. (20)

For free vibration and buckling problems, load terms are set as follows:

(n) (n) (n)

pi = p2 = p3 = o. (21)

Since a plate is in a state of uniform stresses, the in-plane forces are considered to be
constant and the following combination of the in-plane forces is taken into consideration:

(0) (0) (0) (0)

N~2=KMI, M2 =M I =0, (22)

where K denotes the ratio of in-plane forces of x2_ and xl-directions.
Following the Navier solution procedure, displacement components that satisfy the

equations of boundary conditions (19) and (20) may be expressed as

(n) ao ao (n)

V I = L L Urs cos rn~ sin sn11' e
iwt

,
r Is = I

(n) ao ao (n)

V2 = L L Vrs sin rne cos snTf • eliOt
r = I s ~ I

(n) ao ao (n) .

V3 = L L wrssinrnesinsnTf'e'w"
r= I s= I

(23)

where r, s = 1,2,3, ... 00, OJ denotes the natural frequency and i the imaginary unit.
The equations of motion are rewritten in terms of the generalized displacement com-

ponents ~;S> t'!. and :;;:,. The dimensionless natural frequency and buckling load or in-plane
initial force in the xl-direction for vibration problems are expressed as follows:

(0)

Q = OJh.JPjG, A = EhM l b2 jn2D

where the bending stiffness and shear modulus of plates are defined as

(24)

(25)

4. EIGENVALUE PROBLEM FOR NATURAL FREQUENCY AND BUCKLING LOAD OF THICK
PLATE

The equations of motion can be rewritten by collecting the coefficients for the gen­
eralized displacements of any fixed values rand s. The generalized displacement vector {U}
is expressed for in-plane problems as

T (0) (2M-2) (0) (2M-2) (I) (2M-3)
{U} = {urs,. *., Urs ; Vrs,. *., v,s ; Wrs,* .. ·, Wrs }

and for out-of-plane problems as

T (I) (2M-I) (I) (2M-I) (0) (2M-2)
{U} = {urs, ... *' Urs ; V,s,-' 0' Vrs ; Wrs," *' Wrs }.

(26)

(27)

Eigenvalue problems to determine the natural frequency and buckling load are gen­
eralized as follows:
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([K]~2[G]){U} = 0, (28)

where matrix [K] denotes the stiffness matrix which may contain the terms of the in-plane
initial forces and matrix [G] refers to the mass matrix in the case of the vibration problem
and to the geometric-stiffness matrix due to the in-plane forces in the case of the stability
problem. The parameter 2 refers to the corresponding frequency (il2

) or buckling load
(-A).

In order to analyse the eigenvalue problems, eqn (28) may be rewritten as follows:

(29)

where matrix [I] denotes the unit matrix. The matrix [K]-I[G] is called the dynamic matrix
in the vibration problem and the stability matrix in the stability problem.

The power method is used to obtain the numerical solution of the eigenvalue problems.
Although all the eigenvalues and eigenvectors can be computed by this method, the domi­
nant eigenvalue which corresponds to the minimum natural frequency and/or buckling
load is much concerned.

5. NUMERICAL EXAMPLES AND RESULTS

5.1. Numerical examples
A thick elastic rectangular plate with simply supported edges is analysed for six

numerical examples with the thickness parameter

a/h = I, 2, 4, 5, 10, 20. (30)

Poisson's ratio is fixed to be v = 0.3. All the numerical results are shown in the dimensionless
quantities. Since the fundamental equations in the present problem are separated into two
sets ofequations of in-plane and out-of-plane problems, numerical results only for the out­
of-plane problem are shown in the present examples.

In order to verify the accuracy of the present results, convergence properties of the
numerical solutions according to the order of approximate theories are examined in detail.
It is noticed that the proper order of present approximate theories may be estimated
according to the level of thickness parameter of the plate. Although the present sets of
approximate theories of any order can easily be applied to a moderately thick plate, higher
orders of the expanded two-dimensional theories may be necessary to obtain reasonably
accurate solutions for an extremely thick plate.

5.2. Natural frequencies ofa square plate without in-plane forces
The minimum natural frequencies for the first three displacement modes of a square

plate without in-plane forces are shown in Table 1. Convergence properties of the minimum
natural frequency due to the Mth order of approximate theories have been examined and
are shown for the thickness parameter a/h = 2 and 10. It is noticed that the present results
are converged accurately enough within the present order of approximate theories.

In Table I, for moderately thick plates with the thickness parameter a/h = 10 and 20,
the results are compared with the values obtained by the classical plate theory. Since the
classical plate theory overestimates the natural frequencies, higher-order effects of the
present theories should be taken into account to obtain more accurate solutions for the
problem. The results are compared with the exact values of the three-dimensional elasticity
theory (Srinivas et al., 1970) for the specific value of the thickness parameter a/h = 10. For
extremely thick plates with the thickness parameter a/h = 2 and 5, the results are also
compared with the recent results by a continuum three-dimensional Ritz formulation (Liew
et al., 1993).



A: Brunelle and Robertson (1976); B: Reddy and Phan (1985); C: Doong (1987); D: Present sol. (M = 5);
E: classical plate theory (CPT).

t Minimum occurs at r = 3, s = I.
t Minimum occurs at r = 2, s = I.

The present results obtained by M = 5 with sufficient numerical accuracy can be
regarded as the benchmark data of natural frequencies of a square thick plate. For an
extremely thick plate, reasonably accurate natural frequencies are obtained by M = 2-5
according to the level of the thickness parameter.

5.3. Buckling loads for K = 0
The buckling loads for the out-of-plane problem of a thick plate subjected to in-plane

compressive force only in the xl-direction (K = 0) have been obtained. In the following
tables, absolute values of the buckling loads for s = 1 are shown.

In Table 2, the critical buckling loads of a rectangular plate are compared with those
of other analyses and the classical plate theory for the specific cases of the thickness
parameter and the aspect ratio a/b. The present results are obtained by M = 5 which is
considered to be accurate enough for the thickness parameters.

In Table 3, the buckling loads of a square plate for several displacement modes are
shown. Convergence properties of the buckling load for the first displacement mode r = I
due to the Mth order of approximate theories are also shown to be very satisfactory. The
buckling loads for a higher displacement mode r = 500 are considered to be constant with
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Table 3. Buckling load A for various values of M and alh when alb = I and r = 1, 50, 100, 200, 500; s = 1

M (r = 1) r(M= 5)

alh 2 3 4 5 50 100 200 500

1 0.7018 0.5580 0.5255 0.5007 0.4903 0.0719 0.0707 0.0704 0.0703
2 1.8391 1.5910 1.5805 1.5681 1.5620 0.2999 0.2875 0.2829 0.2814
4 3.0918 2.9014 2.9000 2.8974 2.8961 1.3303 1.1994 1.1501 1.1291
5 3.3670 3.2196 3.2189 3.2176 3.2170 2.2061 1.9184 1.8147 1.7683

X 3.6572 3.5687 3.5684 3.5681 3.5679 5.0341 4.0614 3.7206 3.5679
10 3.8204 3.7714 3.7713 3.7712 3.7712 11.9824 8.8221 7.6729 7.1879
20 3.9535 3.9403 3.9403 3.9403 3.9403 76.7487 47.9194 35.2861 29.9828

Minimum occurs at r = 500, s = 1 for a(h ,;;; X. X = 7.08 at which the same buckling load is obtained for
r = 1 and 500.

Table 4. Buckling load A for various values of alb and alh when r = 1,2,3,500; s = I

alh

alb r 2 4 5 10 20

3.00 I 0.1805 1.0687 3.7419 4.9606 8.5173 10.3276
2 0.0534 0.3328 1.3042 1.7880 3.3616 4.2729
3 0.0295 0.1891 0.8511 1.2173 2.5799 3.5190

500 0.0078 0.0313 0.1255 0.1965 0.7987 3.3315
2.00 1 0.2577 1.2114 3.1837 3.8765 5.4258 6.0217

2 0.0880 0.4903 1.5620 2.0134 3.2170 3.7712
3 0.0534 0.3328 1.3042 1.7880 3.3616 4.2729

500 0.0176 0.0703 0.2823 0.4421 1.7970 7.4958
1.00 1 0.4903 1.5620 2.8961 3.2170 3.7712 3.9403

2 0.2577 1.2114 3.1837 3.8765 5.4258 6.0217
3 0.1805 1.0687 3.7419 4.9606 8.5173 10.3276

500 0.0703 0.2814 1.1291 1.7683 7.1879 29.9828
0.50 I 1.2114 3.1837 5.0498 5.4258 6.0217 6.1913

2 0.9184 4.0367 9.9446 11.8864 15.9976 17.4986
3 0.6868 3.9881 13.5084 17.7318 29.6724 35.5343

500 0.2811 1.1255 4.5165 7.0731 28.7516 119.9308
0.33 I 2.4327 6.0951 9.3262 9.9510 10.9242 11.1975

2 2.0569 8.9129 21.6671 25.8012 34.4584 37.5872
3 1.5612 9.0290 30.3839 39.8061 66.2792 79.1851

500 0.6454 2.5838 10.3684 16.2376 66.0045 275.3232
0.25 1 4.0367 9.9446 15.0283 15.9976 17.4986 17.9182

2 3.5541 15.3266 37.0925 44.1143 58.7658 64.0431
3 2.7114 15.6594 52.5819 68.8436 114.4384 136.6151

500 1.1246 4.5020 18.0659 28.2924 115.0062 479.7230

respect to the variation of displacement mode r. The present results obtained by M = 5
with sufficient numerical accuracy can be regarded as the benchmark data of buckling loads
of thick plates. It is noted that the lowest displacement mode gives the critical buckling
load for thin plates. However, an interesting feature is that the critical buckling loads for
thick plates occur at higher displacement modes. For this feature, a limit point of the
thickness parameter at about a/h = 7.08 may appear in the present examples of a square
plate. At this point the same value of critical buckling loads is obtained for the first
displacement mode r = I and for a higher displacement mode r = 500.

In Table 4, the buckling loads of a rectangular plate for the first three displacement
modes and for a higher displacement mode r = 500 are shown for several values of the
aspect ratio. The results are obtained by M = 5 with sufficient numerical accuracy. It is
noticed that critical buckling loads appear at higher displacement modes for the specific
values of the thickness parameter and aspect ratio.
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Fig. I. Minimum natural frequency n versus in-plane initial force A for various values of dis­
placement mode r: (a) a/h = 2; (b) alh = 5.

5.4. Natura/frequencies ofa square plate subjected to in-plane initia/forees (I\: = 0)
The minimum natural frequencies of a square thick plate subjected to in-plane forces

in the xl-direction are plotted to the in-plane initial forces in Fig. 1. Frequency curves for
the thickness parameters a/h = 2 and 5 are plotted for several displacement modes ofr with
s = I. When the natural frequencies go to zero, the in-plane initial forces reduce to the
buckling loads of the plate. The open circle on the horizontal axis shows the critical buckling
load for a higher displacement mode r = 500. Numerical values of the buckling loads for
the displacement modes of r = 1-3 and r = 500 are shown in Table 4.

It can be seen that frequency curves for higher displacement modes are more affected
than those for lower displacement modes by increased compressive forces in the cases of
thick plates. From Fig. 1 it can also be seen that thick plates will buckle in a higher mode
r = 500. Frequency curves for lower displacement modes than the mode in which critical
buckling occurs will cross above the curve for the critical buckling mode prior to buckling.
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At the in-plane initial forces in the neighborhood of the critical buckling loads, lower
natural frequencies can be found for higher displacement modes but not for lower ones.

6. DISCUSSIONS AND CONCLUSIONS

Beyond the limits of applicability of the existing thick plate theories, various orders of
the expanded approximate theories of a thick plate have been applied to analyse the
vibration and stability problems of a simply supported thick plate subjected to in-plane
forces. In the present analysis, only the out-of-plane problems have been analysed and
some useful data for the natural frequencies and buckling loads of an extremely thick plate
have been obtained.

The following conclusions may be drawn from the present analysis.

(l) In order to verify the accuracy of the present results, convergence properties of
the numerical solutions according to the order of approximate theories are examined.
Convergence properties of the minimum natural frequencies and the buckling loads for a
simply supported square plate have been examined in detail. An estimation of the approxi­
mate order of the governing equations may be concluded according to the thickness
parameter. The present results obtained by M = 5 are considered to be accurate enough
for extremely thick plates and can be regarded as the benchmark data of the problem.

(2) The minimum natural frequencies of a simply supported thick plate subjected to
in-plane initial tensile and/or compressive forces have been obtained for all the thickness
parameters and several displacement modes. In the cases of thick plates, the minimum
natural frequencies for higher displacement modes are more affected than those for lower
displacement modes by increased compressive forces.

In the case of a square plate, for comparatively thinner plates with the thickness
parameter a/h larger than about 7.08, the lowest buckling load appears at the first dis­
placement mode r = s = 1. However, for thicker plates with smaller values of the thickness
parameter, lower buckling loads appear at higher displacement modes. When the aspect
ratio becomes larger, lower buckling loads appear also at higher displacement modes.

(3) For the present range of the thickness parameter, reasonably accurate numerical
solutions are obtained by M = 2-5. The present approximate theories can predict the
natural frequencies and buckling loads of an extremely thick plate more accurately when
compared to other refined theories and the classical theory. It can be said that two­
dimensional higher-order plate theories in the present paper are very useful for the vibration
and stability analyses of a thick plate as extended theories of the classical thin plate theory.
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